
Journal of Statistical Physics, Vol. 56, Nos. 5/6, 1989 

Droplets in Two-Dimensional Ising and Potts Models 
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Droplets on a wall and droplets around a nucleus in the center of the lattice are 
studied in the two-dimensional Ising and three-state Potts models using Monte 
Carlo techniques. Finite-size effects are discussed by applying a scaling 
argument and by relating the shape of a droplet to a random walk. 
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1. I N T R O D U C T I O N  

There are various ways to define droplets. Examples are freely nucleated 
droplets, whose equilibrium shapes follow from the Wulff construction, ~1'2) 
and droplets on a wall. (1'3'4) 

In this article finite-size effects on the shape of two types of droplets 
in two-dimensional Ising and three-state Potts models will be discussed. In 
particular, I shall consider droplets on a wall which are introduced by 
fixing the Ising or Potts spin variables on a segment of length L on the 
lower boundary of the system in a state, say, A, different from the one, say, 
B, on the upper and the remainder of the lower boundary. In the Ising 
case, exact results ~1'3,5) have been obtained in the limit of L approaching 
infinity, for instance, on the width of the A droplet formed above the 
segment. The Potts case has not been considered before. Another type of 
droplet may be formed around a nucleus in the center of the system by 
fixing the variables in that center in a specific state, A, and the variables on 
the outer border of the system in a different state, B. The shape of the 
resulting A droplet will be seen to depend strongly on the size and shape 
of the nucleus. An apparently similar boundary condition has been con- 
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sidered recently in the context of "damage spreading ''(6) in Ising models by 
fixing the central spin, but with no restriction on the outer border. 

The outline of the article is as follows: First, I shall present results of 
a Monte Carlo study on droplets on a wall. These findings will be inter- 
preted by using the concept of the random walk to describe the shape of 
the droplet. (3) The observed, surprisingly strong, finite-size dependences 
are retraced to those of the mean square step length b 2 of such a walk. 
In Section 3, Monte Carlo results on droplets around a nucleus in the 
center of the lattice will be discussed. In particular, at the bulk critical 
temperature the radius of the droplet around the fixed central spin is found 
to grow with the square root of the linear dimension of the system, in 
accordance with a scaling argument, both in the Ising and three-state Potts 
cases. A short summary concludes the article. 

2. D R O P L E T S  ON A W A L L  

The geometry used to describe droplets on a wall is sketched in Fig. 1: 
The Ising (Si = _+ 1) or three-state Potts (Si = 0, 1, 2) variables are fixed on 
the boundary of a lattice of K1 �9163 spins such that L spins on a segment 
in the middle of the lower boundary, which is totally of length K1 (setting 
lattice constants equal to one), are in state A with A = A~ = - 1  in the Ising 
case and A = Ap = 0 in the Potts case, while the spins on the remaining 
boundary are in a different state B, with B I = 1 and Bp = 2. The spins in the 
interior of the system interact with each other and with the ones on the 
boundary through the Hamiltonians 
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Fig. 1. G e o m e t r y  of the drople t  on  a wal l  in the Is ing case. 
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in the Ising case, where the sum runs over all lattice sites i and their 
neighbors, i +  5; and 

= - ~ Jasi ,s ,+a (2) 
i,5 

in the Potts case. The coupling constant J is assumed to be positive. 
Then an A droplet will be formed on the lower wall, i.e., above the 

segment of L spins. Its shape and size may be described by the coordinates 
(xs, Ys) (see Fig. 1 ), with the y axis being chosen to be parallel to the lower 
boundary and the x axis being perpendicular to,it. The origin of the coor- 
dinate system is the midpoint of the segment. At (xs, y,) the density of 
state A, nA, is equal to the density of state B, n~. In general, the density 
of a state, say C, with C I = +1 and Cp = 0, 1, 2, nc, is defined by 

nc( x, Y)= (6sxy, c) (3) 

where the brackets ( . )  denote the usual thermal average. Hence the shape 
of the droplet (xs, y,) is given by 

nA(Xs, Y s ) = n ~ ( x s ,  Ys) (4) 

Usually, Eq. (4) is not fulfilled for any lattice point, and one may 
consider densities on a continuum (x, y) by smooth interpolation between 
their values at the lattice sites. Examples are depicted in Figs. 2 and 3, 

Fig. 2. 
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Densities of state in the three-state Potts model at 0.8To along the path (x, y = 0). 
The size of the system is 131 -55. Here x m denotes the width of the droplet. 
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Fig. 3. 
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Magnetization in the Ising model at 0.8T c along the path (x, y = 0). Systems of sizes 
63.35 (L = 11, 21) and 121 - 45 (L = 51 ) are considered. 

showing densities along a path perpendicular to the wall starting at the 
midpoint of the L segment. Of course, the droplet is expected to have its 
largest extent there, with the interface between the A region and the B 
region being at (Xs = xm, Ys = 0). It is interesting to note that in the Potts 
case the density n 1 displays a maximum near that interface; see Fig. 2. 
Indeed, one observes the phenomenon of "interfacial adsorption, ''(v/ i.e., 
there is an excess of nonboundary states 1 at the interface separating the 
0- and 2-rich regions, as has been discussed before for various multistate 
models. (7) This phenomenon clearly distinguishes the Potts and Ising cases. 
In the Ising model, (see Fig. 3) data for the magnetization M(x, y) are 
shown, which follows from the densities n+l(X, y) and n_l(X, y) by 

M(x, y)= <Sxy> = n+,(x,  y ) - n _ l ( x ,  y) (5) 

The shape of the - droplet is obtained from M(xs, Ys) = O. 
From such smooth interpolations for the densities the entire 0 or - 

droplets may be mapped to study their dependence on the size of the 
system K1, K2, and L, as well as temperature T. Illustrations are given in 
Figs. 4 and 5 at temperatures well below the bulk transition temperatures 
To, with kB Tc(Ising)= 2J/ln(x/~ + l ) and kB Tc(Potts)= J/ln(x/5 + l ), 
namely T--0.8To. At such a temperature, the correlation lengths are quite 
small, and finite-size effects due to the linear dimensions of the system K1 
and K 2 are expected to play a minor role, making it possible to study 
separately the influence of the length of the pinning segment, L. Of course, 
K1 and K2 have to be chosen to be sufficiently large compared to L and the 
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Fig. 4. Droplet shapes in the Potts  model at 0.8T c. The points (O)  denote Monte  Carlo 
data, the lines are fits to the elliptical curve of Eq. (6). The sizes are 63.63 ( L = 2 1 )  and 
~31. 55 (L= SD. 

width of the droplet xm. Results on the L dependence at 0.8Tc will be 
discussed below. 

On the other hand, at the critical point T= To, the correlation lengths 
diverge, leading to possibly strong dependences of the shape and size of the 
droplet on KI and K 2 as well. This has been confirmed, e.g., in the Ising 
case for L =  11 and K I = K 2 = K  with K ranging from 11 to 101. In that 
range, Xm grows about linearly in l/K, and the droplet seems to approach 
a circular shape as K goes to infinity (see ref. 13 for details). 
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Fig. 5. Droplet shapes in the Ising model at 0.8T c. The lines and points are determined as 
in Fig. 4. The sizes are 63.35 (L = 11, 21) and 121.45 (L = 81 ). 
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In general, the shape of a droplet is found to be, to a very good degree 
of accuracy, elliptical, i.e., 

X 2 + a I y~ = a 2 (6) 

as exemplified in Figs. 4 and 5. In those examples, and throughout the 
following analysis, the coefficients al and a2 are determined from the points 
(xm, 0) and (x~, Ys = _ ( L -  1)/2). 

Very interestingly, the identification of a droplet on a wall as an ellipse 
follows from a description of the droplet as a random walk between the 
endpoints of the pinning segment (x s = 0, y~+'-)),  as has been discussed in 
detail by Fisher. (3) Starting, say, at the left endpoint (0, y~-)) of the 
droplet, a random walk proceeds by going either forward (to the right), up, 
or, at later stages, down. Then, assuming the size of the droplet to be 
sufficiently large so that the central limit theorem can be applied for the 
random walk, one finds Eq. (6) with (s) 

al = 2b2/Lo; a2 = �89 b2 (7) 

where L o is the length of the wall along which the droplet is pinned, 
L - ,,~+) ,,~-) b 2 is the mean square step length of the random walk, 0 - -  . , V s  - -  . r s  , 

proceeding in the forward, down, or up direction (the backward direction 
would correspond to overhangs, which are not included). From Eqs. (6) 
and (7), the width of the droplet immediately follows, 

b xm= L  j2 (8) 

The exponents here could have been guessed easily since the spread of a 
random walk of Lo steps is always of order bL 1/2. Indeed, for the Ising 
model, in the limit of Lo going to infinity, it has been shown rigorously (1'5) 
that x,~ is proportional to the square root of Lo. For the Ports case, one 
may wonder whether the description of the droplet as a random walk still 
holds, in view of the phenomenon of interfacial adsorption. However, 
because the adsorbed state 1 interacts with the two other states 0 and 2 in 
the same way, one might argue that the interfacial adsorption simply 
renormalizes the mean square step length. 

To check Eq. (8), Xm has been computed for various values of the 
pinning segment L at T =  0.8T c, choosing K1 and Kz sufficiently large to be 
able to disregard possible additional finite-size effects, as mentioned before. 
Results are depicted in Fig. 6, both for the Ising and Potts cases. 
Obviously, for small values of L, the width of the droplet Xm increases 
faster than with the square root of L (the numerical differences between L 
and L o are negligibly small). Actually, defining an effective exponent aefr(L) 
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Fig. 6. The width xm of the droplet versus the length L of the segment above which the 
droplet is formed, in a log-log plot for (O)  Ising and (O)  Ports models at 0.8To. The broken 
lines are guides to the eye; the solid line illustrates the slope I/2. 

with ae~= d(ln Xm)/d(ln L), one finds it to decrease monotonically from a 
value of about 3/4, 10 ~< L ~< 20, to its expected asymptotic value, a = 1/2. 
To approach that asymptotic value rather closely, quite large pinning 
segments L are needed. Roughly, L has to exceed about 110 in the Ising 
case, and about 70 in the Potts case at T =  0.8To. 

At first sight, this behavior may be rather surprising. As shown in 
Fig. 7, it reflects the L dependence of the mean square step length of the 
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The mean square step length b 2 versus 1/L for the (O)  Ising and ( �9  Potts models 
at 0.8T c. The solid lines are guides to the eye. 
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random walk. This means that Eq. (8) holds, but b 2 depends strongly on 
L, reaching its asymptotic value only for quite large values of L. This 
dependence may be readily understood from the fact that the random walk 
is limited in its down direction, because of the wall. In other words, the 
droplet can fluctuate freely only toward the upper boundary, but its fluc- 
tuations are cut off by the lower boundary; see also the asymmetries in the 
profiles of the densities in Figs. 2 and 3. In the Potts case, such fluctuations 
are supposedly somewhat hindered by the interfacial adsorption of the 1 
states, explaining possibly also the crossover of a ~  to its asymptotic value 
1/2 at somewhat smaller values of L compared to the Ising case. 

At any rate, finite-size effects are quite pronounced, and results on 
properties of droplets or, more generally, on interfacial phenomena close to 
a wall, obtained from the analysis of small lattices, such as the ones using, 
for instance, the transfer matrix method, have to viewed with care (see 
ref. 8 for a related depinning problem). 

So far, Monte Carlo results for T=0 .8Tc  have been presented and 
discussed. They are typical for temperatures below the bulk transition tem- 
perature To. The asymptotics are not expected to be affected by changing 
temperatures, T < Tc. Of course, quantities such as the width of the droplet 
or the mean square step length depend quantitatively on T. For  instance, 
b has been found to increase monotonically with T at fixed L, L =  11, in 
the range 0.8 ~< T/Tc ~< 1 for the Ising case. 

Certainly, xm is expected to increase also with temperature at fixed L, 
which has been checked and confirmed. At T~, the elliptical shape of the 
droplet seems to go over into a circular one for K1 = Kz = K approaching 
infinity, as mentioned before. At criticality, extremely long runs are 
necessary to extract reliable information, and no serious attempt has been 
made to investigate, e.g., b(Tc, L). Already at T=0.8Tc ,  runs of typically 
several 10 4 up to a few 10 5 MC steps per site are needed to get well-equi- 
librated data. In general, interfacial properties require very extensive 
simulations, due to slow relaxation and fluctuation times. (7) 

Above Tc, for finite systems the definition of a droplet, Eq. (4), still 
holds. The width of the droplet continues to grow with temperature, but, 
of course, the interface between the A and the B regions becomes more and 
more fuzzy. No detailed simulations have been performed, because the 
concept of an interface loses it meaning for T >  T c in the thermodynamic 
limit. 

3. D R O P L E T S  A R O U N D  A N U C L E U S  

The boundary conditions used to generate droplets around a nucleus 
are sketched in Fig. 8. We consider a square lattice of K.  K spins. In the 
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Fig. 8. Geometry of the droplet around a nucleus of (L. L) spins in the center of the square 
lattice in the Ising case. 

center of the lattice, the spins on a square of size L .  L are fixed to be in 
state A with A = A ~ =  -1  in the Ising case and A = A ~ = 0  in the Potts 
case, while the spins on the outer border of the system are in a different 
state, with B I = 1 and By=2. The interactions between the spins are 
described by the Hamiltonians (1) and (2). 

At zero temperature, the spins outside the square in the center are in 
the B state. At nonzero temperatures, an A nucleus is formed around the 
square. Its shape and size can be determined in the same way as has been 
done for the nucleus on a wall; see Eq. (4). Instead of the coordinates 
(xs, Ys), one may also use radial and angular coordinates r~.(,) as depicted 
in Fig. 8. 

Using Monte Carlo techniques, r,(~) has been studied as a function of 
K, L, and temperature T. At T <  To, one observes that the shape of the 
droplet deviates strongly from that of a freely nucleated droplet. ~2'9) The 
latter one follows from the interfacial tension applying the Wulff construc- 
tion. It assumes an interface which can fluctuate without restrictions. 
However, in the case of the droplet around a nucleus, the fluctuations of 
the interface are always hindered by the fixed spins in the center. This 
restriction cannot be overcome by enlargening L, because the radius of the 
droplet grows more slowly than linearly in L (see the related results in the 
previous section). Accordingly, the shape of the droplet resembles more 
and more closely the shape of the center, i.e., the droplet looks more 
quadratic, on increasing L. 
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At To, the dependence of rs(~ ) on K is quite pronounced, because of 
the divergent correlation lengths. A detailed Monte Carlo study has been 
done for the case of one fixed spin in the center, L = 1. The droplet takes 
on a circular shape, and its radius r grows continuously with K. Indeed, as 
shown in Fig. 9, for 30~<K~<200, one finds 

r ~ K  x (9) 

with x very close to 1/2. Such an exponent follows from a scaling argu- 
ment, which will be outlined in the following. Obviously, the diminishing 
of the A density n A with distance d from the central spin is governed by the 
bulk correlation length 3. At T =  To, one has ~ d -N, where q =~h = 1/4 
and q = qp = 4/15; see ref. 10. At the boundary of the droplet, nA =nB,  the 
order parameter  O vanishes. From standard finite-size scaling theory, (n) 
the size dependence of the order parameter  (of course, in the A region as 
well as in the B region) is known to scale like O ~ K  ~/~, with fl, = 1/8, 
fie = 1/9, vi = 1, and vp = 5/6. Therefore, one might suppose that the radius 
r of the droplet is given by 

r " ~ K  -l~/~ (10) 

i.e., by the distance from the center at which the A density is in between 
the equilibrium value of the order parameter  in the A and B regions. From 
the values for t/, fl, and v quoted above, one immediately obtains x = 1/2 
in the Ising and Potts cases, in agreement with the Monte Carlo result. 

As for droplets on a wall, no detailed simulations have been performed 
at temperatures above To. 

110 210 Z J I I 

50 100 200 K 500 

Fig. 9. Radius r of the droplet around a central spin versus the linear dimension K of the 
system for Ising and Potts models at T C. The solid lines represent the slope 1/2. 
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4. S U M M A R Y  

Using standard Monte Carlo techniques, finite-size effects of droplets 
have been studied in two-dimensional Ising and three-state Potts models. 
Pronounced finite-size effects have been observed which could be explained 
by relating the shape of the droplet on a wall to a random walk and by 
applying a scaling argument in the case of the droplet around a nucleus. In 
particular, the width of the droplet on a wall is expected to grow as the 
square root of the length of the pinning segment L. This asymptotically 
true behavior is masked by the pronounced L dependence of the mean 
square step length of the random walk describing the droplet. At criticality, 
the radius of the droplet around a nucleus is argued to grow with the 
square root of the linear dimension of the system. 

The phenomenon of interfacial adsorption for the three-state Ports 
model is found to have only quantitative, but no qualitative, consequences 
on the shape and size of the droplets. 

Freely nucleated droplets, as encountered, for instance, in the Wulff 
construction, may be investigated by defining similar boundary conditions 
and by using, possibly, Kawasaki  kinetics to conserve the number of states. 

A C K N O W L E D G M E N T S  

This work originated from a discussion with J. De Coninck, which 
is gratefully acknowledged. It is also a pleasure to thank K. Binder for a 
discussion on the scaling argument, and D. Kroll, R. Lipowsky, and 
D. Stauffer for comments. 

N O T E  A D D E D  IN P R O O F  

The findings on the Ising droplets are confirmed by analytic results 
using a continuum SOS approximation (12~ and conformal invariance. (13~ 
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